
EECS 349 - Machine Learning (Spring 2018)
Project Status Report

Team: Yixue Wang, Hanlin Li, Katya Borgos-Rodriguez

In our project, we used data from The New York Times (NYT) to build a classification model
that could predict whether a comment left on an article was picked by editors or not. This is
important because managing and moderating online news comments at scale is a challenging and
overwhelming task for editors. We have learned from a prior study that picking a high-quality
comment often requires a series of considerations from editors that hard-coded rules could not
resolve . Besides, the classification model makes it possible for the researchers to understand the 1

social impacts of the picks by evaluating the comment quality trends of individual users and
promotes more engagements in the online community in the long term. The New York Times has
provided a valuable dataset including comments that are flagged by professional editors as
high-quality ones. Applying inductive learning algorithms to this dataset will be able to build a
classifier that helps to detect high-quality comments at scale and help the platform promote
users’ engagements in the future. The classification model makes it possible for the researchers
to understand the social impacts of the picks by evaluating the comment quality trends of
individual users and promotes more engagements in the online community in the long term and
help editors to moderate online comments at scale.

The source of our data was ​The New York Times Community API​. We sampled 100,000 posts,
dating from March 21, 2015 to April 2, 2015, from a dataset that was collected in an ongoing
research project. Only 2,031 of the comments in this set are NYT picks; thus, the data was a very
imbalanced dataset. The data was partitioned such that there was a training set of 90,000, and a
test dataset of 10,000.

The features we have used in our classifiers include reply count, recommendation count (i.e.,
how many times the post is voted as ‘recommended’ by the community), negative and positive
sentiment score computed by NLTK’s SentimentAnalyzer, word count, the hour when the
comment was created and tf-idf vector from the comment. We stemmed the words using
snowballstemmer from NLTK and stripped the stop words from the text before running the tf-idf
vectors in order to boost the performance. Then, we tested the following learners: Naive Bayes,
Support Vector Machine (SVM), Random Forest, LinearSVC and Logistic Regression, all from
the scikit-learn library for the Python programming language. As previously described, our
dataset was imbalanced. In order to mitigate this problem, we applied balanced bagging classifier
from imbalanced-learn library, which randomly undersamples the non-picks and train the

1 Park, D. et al. (2016). Supporting Comment Moderators in Identifying High Quality Online News
Comments. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI
‘16). ​https://dl.acm.org/citation.cfm?id=2858389

https://developer.nytimes.com/community_api_v3.json
https://dl.acm.org/citation.cfm?id=2858389

processed balanced data for 10 different times to improve the performance. The f1-score was
around 0.2 and the average precision score was around 0.2 for all the classifiers we tried. Among
all of the classifiers, Random Forest and Logistic Regression achieved the highest average
precision score (0.29 and 0.25, respectively). Figures 1 and 2 are the precision-recall plots for
these two models.

After running all the models mentioned before, there is another technique that we tried in order
to improve the performance - stacking from mlxtend library. Base models in the stacking model
included all the algorithms we tried before and the probabilities produced by these base models
were used as meta-features, and BalancedBaggingClassifier with base model as logistic
regression was used as the meta model to build a stacking model. The new stacking model
achieved the best average precision score, 0.33. The precision-recall plot is shown in Figure 3.
The details of preprocessing data, feature engineering and and models comparisons are all
covered in the jupyter notebook available on the project website.

Member Contributions
Yixue Wang: Data cleaning and preprocessing, feature engineering, bagging and stacking, model
evaluation, final paper

Hanlin Li: Data cleaning and preprocessing, base models testing, model evaluation, final paper,
website

Katya Borgos-Rodriguez: Data cleaning and preprocessing, base models testing, model
evaluation, different metrics comparison, final paper, website

Appendix:

Figure 1:​ Precision-Recall plot, Random Forest (the number of trees = 400, class_weight =

'balanced').

Figure 2:​ Precision-Recall plot, Logistic Regression using BaggingClassifier

BalancedBaggingClassifier(base_estimator= LogisticRegression(), replacement = True).

Figure 3:​ Precision-Recall plot, StackingClassifier.

