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In our project, we used data from The New York Times (NYT) to build a classification model                 
that could predict whether a comment left on an article was picked by editors or not. This is                  
important because managing and moderating online news comments at scale is a challenging and              
overwhelming task for editors. We have learned from a prior study that picking a high-quality               
comment often requires a series of considerations from editors that hard-coded rules could not              
resolve . Besides, the classification model makes it possible for the researchers to understand the              1

social impacts of the picks by evaluating the comment quality trends of individual users and               
promotes more engagements in the online community in the long term. The New York Times has                
provided a valuable dataset including comments that are flagged by professional editors as             
high-quality ones. Applying inductive learning algorithms to this dataset will be able to build a               
classifier that helps to detect high-quality comments at scale and help the platform promote              
users’ engagements in the future. The classification model makes it possible for the researchers              
to understand the social impacts of the picks by evaluating the comment quality trends of               
individual users and promotes more engagements in the online community in the long term and               
help editors to moderate online comments at scale.  
 
The source of our data was ​The New York Times Community API​. We sampled 100,000 posts,                
dating from March 21, 2015 to April 2, 2015, from a dataset that was collected in an ongoing                  
research project. Only 2,031 of the comments in this set are NYT picks; thus, the data was a very                   
imbalanced dataset. The data was partitioned such that there was a training set of 90,000, and a                 
test dataset of 10,000.  
 
The features we have used in our classifiers include reply count, recommendation count (i.e.,              
how many times the post is voted as ‘recommended’ by the community), negative and positive               
sentiment score computed by NLTK’s SentimentAnalyzer, word count, the hour when the            
comment was created and tf-idf vector from the comment. We stemmed the words using              
snowballstemmer from NLTK and stripped the stop words from the text before running the tf-idf               
vectors in order to boost the performance. Then, we tested the following learners: Naive Bayes,               
Support Vector Machine (SVM), Random Forest, LinearSVC and Logistic Regression, all from            
the scikit-learn library for the Python programming language. As previously described, our            
dataset was imbalanced. In order to mitigate this problem, we applied balanced bagging classifier              
from imbalanced-learn library, which randomly undersamples the non-picks and train the           
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processed balanced data for 10 different times to improve the performance. The f1-score was              
around 0.2 and the average precision score was around 0.2 for all the classifiers we tried. Among                 
all of the classifiers, Random Forest and Logistic Regression achieved the highest average             
precision score (0.29 and 0.25, respectively). Figures 1 and 2 are the precision-recall plots for               
these two models. 
 
After running all the models mentioned before, there is another technique that we tried in order                
to improve the performance - stacking from mlxtend library. Base models in the stacking model               
included all the algorithms we tried before and the probabilities produced by these base models               
were used as meta-features, and BalancedBaggingClassifier with base model as logistic           
regression was used as the meta model to build a stacking model. The new stacking model                
achieved the best average precision score, 0.33. The precision-recall plot is shown in Figure 3.               
The details of preprocessing data, feature engineering and and models comparisons are all             
covered in the jupyter notebook available on the project website.  
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Figure 1:​ Precision-Recall plot, Random Forest (the number of trees = 400, class_weight = 

'balanced'). 
 

 
Figure 2:​ Precision-Recall plot, Logistic Regression using BaggingClassifier 

BalancedBaggingClassifier(base_estimator= LogisticRegression(), replacement = True). 

 



 
Figure 3:​ Precision-Recall plot, StackingClassifier. 

 


